5 research outputs found

    Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics

    Get PDF
    © 2017 International Federation for Medical and Biological Engineering The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot

    An optimization study of estimating blood pressure models based on pulse arrival time for continuous monitoring

    Get PDF
    Continuous blood pressure (BP) monitoring has a significant meaning for the prevention and early diagnosis of cardiovascular disease. However, under different calibration methods, it is difficult to determine which model is better for estimating BP. This study was firstly designed to reveal a better BP estimation model by evaluating and optimizing different BP models under a justified and uniform criterion, i.e., the advanced point-to-point pairing method (PTP). Here, the physical trial in this study caused the BP increase largely. In addition, the PPG and ECG signals were collected while the cuff bps were measured for each subject. The validation was conducted on four popular vascular elasticity (VE) models (MK-EE, L-MK, MK-BH, and dMK-BH) and one representative elastic tube (ET) model, i.e., M-M. The results revealed that the VE models except for L-MK outperformed the ET model. The linear L-MK as a VE model had the largest estimated error, and the nonlinear M-M model had a weaker correlation between the estimated BP and the cuff BP than MK-EE, MK-BH, and dMK-BH models. Further, in contrast to L-MK, the dMK-BH model had the strongest correlation and the smallest difference between the estimated BP and the cuff BP including systolic blood pressure (SBP) and diastolic blood pressure (DBP) than others. In this study, the simple MK-EE model showed the best similarity to the dMK-BH model. There were no significant changes between MK-EE and dMK-BH models. These findings indicated that the nonlinear MK-EE model with low estimated error and simple mathematical expression was a good choice for application in wearable sensor devices for cuff-less BP monitoring compared to others

    Influence of computer work under time pressure on cardiac activity

    No full text
    Computer users are often under stress when required to complete computer work within a required time. Work stress has repeatedly been associated with an increased risk for cardiovascular disease. The present study examined the effects of time pressure workload during computer tasks on cardiac activity in 20 healthy subjects. Heart rate, time domain and frequency domain indices of heart rate variability (HRV) and Poincare plot parameters were compared among five computer tasks and two rest periods. Faster heart rate and decreased standard deviation of R-R interval were noted in response to computer tasks under time pressure. The Poincare plot parameters showed significant differences between different levels of time pressure workload during computer tasks, and between computer tasks and the rest periods. In contrast, no significant differences were identified for the frequency domain indices of HRV. The results suggest that the quantitative Poincare plot analysis used in this study was able to reveal the intrinsic nonlinear nature of the autonomically regulated cardiac rhythm. Specifically, heightened vagal tone occurred during the relaxation computer tasks without time pressure. In contrast, the stressful computer tasks with added time pressure stimulated cardiac sympathetic activity

    The response of the autonomic nervous system to passive lower limb movement and gender differences

    No full text
    The aim of the present study was to identify the response of the autonomic nervous system (ANS) to passive lower limb movement and to determine whether there are gender differences. The experimental sets included 5 cycles per minute (CPM5), 10 cycles per minute (CPM10) and 15 cycles per minute (CPM15) on the passive cycling machine. ANS activity was measured using heart rate variability time domain analysis (RR interval, pNN50, RMSSD and SDNN), frequency domain analysis (TF, LF, HF and LF/HF) and Poincaré plot analysis (SD1, SD2 and SD1/SD2 ratio). The collected signal at rest served as the baseline (rest). Compared with the parameters at rest, the male subjects had decreased pNN50, decreased SDNN, lower TP and LF power (ms2), suppressed LF (n.u.), augmented HF (n.u.), suppressed LF/HF, decreased SD2 and increased SD1/SD2 ratios in response to CPM5 or CPM10 (all P < 0.05). Compared with the parameters at rest, decreased LF/HF and increased SD1/SD2 in response to CPM5 or CPM10 (all P < 0.05) were the only changes in the female subjects. LF/HF and SD1/SD2 differed between both groups for the same level of passive lower limb movement (all P < 0.05). These results suggest that passive lower limb movement leads to an ANS response and that male subjects are more sensitive to passive lower limb movements. During passive leg movements, sympathetic nervous activity is largely suppressed, and vagal activity achieves dominance. The response of the ANS to passive leg movement is determined by gender

    A revised point-to-point calibration approach with adaptive errors correction to weaken initial sensitivity of cuff-less blood pressure estimation

    No full text
    Initial calibration is a great challenge for cuff-less blood pressure (BP) measurement. The traditional one point-to-point (oPTP) calibration procedure only uses one sample/point to obtain unknown parameters of a specific model in a calm state. In fact, parameters such as pulse transit time (PTT) and BP still have slight fluctuations at rest for each subject. The conventional oPTP method had a strong sensitivity in the selection of initial value. Yet, the initial sensitivity of calibration has not been reported and investigated in cuff-less BP motoring. In this study, a mean point-to-point (mPTP) paring calibration method through averaging and balancing calm or peaceful states was proposed for the first time. Thus, based on mPTP, a factor point-to-point (fPTP) paring calibration method through introducing the penalty factor was further proposed to improve and optimize the performance of BP estimation. Using the oPTP, mPTP, and fPTP methods, a total of more than 100,000 heartbeat samples from 21 healthy subjects were tested and validated in the PTT-based BP monitoring technologies. The results showed that the mPTP and fPTP methods significantly improved the performance of estimating BP compared to the conventional oPTP method. Moreover, the mPTP and fPTP methods could be widely popularized and applied, especially the fPTP method, on estimating cuff-less diastolic blood pressure (DBP). To this extent, the fPTP method weakens the initial calibration sensitivity of cuff-less BP estimation and fills in the ambiguity for individualized calibration procedure
    corecore